Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585800

RESUMO

Autoimmune uveitis is a major cause of blindness in the working-age population of developed countries. Experimental autoimmune uveitis (EAU) depends on activation of interphotoreceptor retinoid-binding protein (IRBP) specific CD4 + effector T cells that migrate systemically and infiltrate into the retina. Following systemic induction of retinal antigen-specific T cells, the development of EAU can be broken down into three phases: early phase when inflammatory cells begin to infiltrate the retina, amplification phase, and peak phase. Although studied extensively, the function of local antigen-presenting cells (APCs) within the retina remains unclear. Two potential types of APCs are present during uveitis, resident microglia and infiltrating CD11c + dendritic cells (DCs). MHC class II (MHC II) is expressed within the retina on both CD11c + DCs and microglia during the amplification phase of EAU. Therefore, we used microglia specific (P2RY12 and TMEM119) and CD11c + DC specific MHC II knockout mice to study the function of APCs within the retina using the conventional and adoptive transfer methods of inducing EAU. Microglia were essential during all phases of EAU development: the early phase when microglia were MHC Il negative, and amplification and peak phases when microglia were MHC II positive. Unexpectedly, retinal infiltrating MHC Il + CD11c + DCs were present within the retina but their antigen-presenting function was not required for all phases of uveitis. Our data indicate microglia are the critical APCs within the retina and an important therapeutic target that can prevent and/or diminish uveitis even in the presence of circulating IRBP-specific CD4 + effector T cells.

2.
J Neuroophthalmol ; 44(1): 16-21, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938114

RESUMO

BACKGROUND: In 2005, we reported 3 patients with bilateral optic nerve damage early in life. These patients had stable vision for decades but then experienced significant bilateral vision loss with no obvious cause. Our hypothesis, novel at that time, was that the late decline of vision was due to age-related attrition of retinal ganglion cells superimposed on a reduced neuronal population due to the earlier injury. EVIDENCE ACQUISITION: The field of epigenetics provides a new paradigm with which to consider the normal aging process and the impact of neuronal injury, which has been shown to accelerate aging. Late-in-life decline in function after early neuronal injury occurs in multiple sclerosis due to dysregulated inflammation and postpolio syndrome. Recent studies by our group in mice have also demonstrated the possibility of partial reversal of cellular aging and the potential to mitigate anatomical damage after injury and even improve visual function. RESULTS: The results in mice and nonhuman primates published elsewhere have shown enhanced neuronal survival and visual function after partial epigenetic reprogramming. CONCLUSIONS: Injury promotes epigenetic aging , and this finding can be observed in several clinically relevant scenarios. An understanding of the epigenetic mechanisms at play opens the opportunity to restore function in the nervous system and elsewhere with cellular rejuvenation therapies. Our earlier cases exemplify how reconsideration of previously established concepts can motivate inquiry of new paradigms.


Assuntos
Esclerose Múltipla , Doenças do Nervo Óptico , Humanos , Camundongos , Animais , Doenças do Nervo Óptico/genética , Nervo Óptico , Células Ganglionares da Retina , Envelhecimento/genética , Transtornos da Visão/genética , Cegueira
3.
Cell Reprogram ; 25(6): 288-299, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060815

RESUMO

Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Camundongos , Animais , Pressão Intraocular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Glaucoma/terapia , Glaucoma/tratamento farmacológico , Retina/metabolismo , Terapia Genética , Modelos Animais de Doenças
5.
Immun Ageing ; 20(1): 53, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838654

RESUMO

BACKGROUND: Increased age is a risk factor for the development and progression of retinal diseases including age-related macular degeneration (AMD). Understanding the changes that occur in the eye due to aging is important in enhancing our understanding of AMD pathogenesis and the development of novel AMD therapies. Microglia, the resident brain and retinal immune cells are associated with both maintaining homeostasis and protection of neurons and loss of microglia homeostasis could be a significant player in age related neurodegeneration. One important characteristic of retinal aging is the migration of microglia from the inner to outer retina where they reside in the subretinal space (SRS) in contact with the retinal pigment epithelial (RPE) cells. The role of aged subretinal microglia is unknown. Here, we depleted microglia in aged C57/BL6 mice fed for 6 weeks with a chow containing PLX5622, a small molecule inhibitor of colony-stimulating factor-1 receptor (Csf1r) required for microglial survival. RESULTS: The subretinal P2RY12 + microglia in aged mice displayed a highly amoeboid and activated morphology and were filled with autofluorescence droplets reminiscent of lipofuscin. TEM indicates that subretinal microglia actively phagocytize shed photoreceptor outer segments, one of the main functions of retinal pigmented epithelial cells. PLX5622 treatment depleted up to 90% of the retinal microglia and was associated with significant loss in visual function. Mice on the microglia depletion diet showed reduced contrast sensitivity and significantly lower electroretinogram for the c-wave, a measurement of RPE functionality, compared to age-matched controls. The loss of c-wave coincided with a loss of RPE cells and increased RPE swelling in the absence of microglia. CONCLUSIONS: We conclude that microglia preserve visual function in aged mice and support RPE cell function, by phagocytosing shed photoreceptor outer segments and lipids, therefore compensating for the known age-related decline of RPE phagocytosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...